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SECTION 1
INTRODUCTION

1.1  BACKGROUND

Most criteria for development of failure in materials are based upon
stress/strain/energy distribution. Therefore, in order to model cumulative damage
processes in laminated composites, we feel that reliable procedures for evaluation of
distribution of stress/strain/energy in the material must be available. This requires an
adequate theory governing the behavior of laminated composites along with appropriate
methods for solution of the boundary value problem. The current research program
covered development of theoretical framework as well as approximate solutions. This
report covers one of the alternative approaches investigated viz, Paganos theory of
linear elastic composite laminates based on the assumption of linear variation of
in-plane stresses over the thickness of a layer or sublayer (each lamina being further
divided into sublayers, if desired), satisfying equilibrium equations exactly, evaluating
strains from stresses, and evaluating generalized displacements by integration of strain
components and their moments up to a certain order. This section provides an
introduction to the problem and describes the scope of the work as well as the

organization of this report.




12 Introduction

Considerable research effort has been devoted to the development of analytical
procedures for the analysis of the behavior of composite materials. This has resulted in
a variety of laminated plate theories and solution methods including, among others,
classical thin plate theory [Stavsky 1961], higher order theories [Whitney 1973, Nelson
1974, Lo 1977, Reddy 1984] and discrete laminate theories [Srinivas 1973, Sun 1973,
Pagano 1978, 1983]

Classical thin plate theory (CPT) based on Kirchhoff hypothesis assumes that
transverse shear deformation is negligible. For analysis of laminated composites, it is
well known [Whitney 1969, Pagano 1969,1970, Srinivas 1970] that use of CPT leads to
underprediction of the transverse deflection. This is Give to the fact that the ratio of
shear to Young's modulus is lower in most composite materials than in conventional
isotropic materials. Also, the error grows with an increase in plate thickness.

Higher order theories [Whitney 1973,1974] which include higher order shear modes
lead to improved estimates of in-plane stress distributions. However, higher order
theories based on assumption of second and higher order polynomial distribution of
in-plane displacements over the depth- of the plate, have two critical deficiencies. The
first is their lack of capability to describe local deformation precisely. Due to this, it
is difficult to avoid error in calculating in-plane stresses around laminar interfaces,
especially, when shear rigidities of adjacent laminae are quite different [Sun 1973, Lo
1977]. The other deficiency is the violation of equilibrium of the plate because stress
continuity at the interface is, in general, not satisfied. The need to eliminate these
deficiencies has motivated the development of several discrete laminated plate theories
[Srinivas 1973, Sun 1973] in which variation of directional properties within the
laminate is properly incorporated. As the discrete laminate theory not only removes the

drawbacks of higher order theories noted above, but also allows different boundary




conditions to be specified in each layer, it has been able to accurately describe the
mechanical behavior of most laminated plates. The discrete laminate theory results in
better estimates of in-plane stress distribution [Sun 19731 However, this theory, in
general, involves a large number of field equations, and consequently makes the
problems quite complicated.

Since the boundary value problem of a structure constructed with composite
laminates is extremely complex, approximate techniques are often used . obtain
solutions. The approximate techniques based on the discrete laminated plate theory can
be classified as displacement-based or stress-based approaches. The anpalytical solutions
of displacement-based approach include the approximate elasticity solutions [Puppo and
Evensen 1970, Pagano and Pipes 1973), modified higher order theory [Pagano 1974],
boundary layer theory [Tang and Levy 1975} Pagano's theory based on the restatement
of Reissner’s theory for each lamina [Pagano 1978), and its simplication the glcbal-local
model [Pagano 1983] Numerical solutions include use of the finite difference method
[Pipes and Pagano 1970, Altus et al. 1980] and the finite element metho¢ [Wang and
Crossman 1977,1978; Raju and Crews 1981; Whitcomb et al. 1982] The stress-based
finite element approaches include Pian [1969], Rybicki [1971], and Spilker [1980)

Recently, Chang [1987] developed a finite element procedure based on minimization
of potential energy and ensuring continuity of displacements as well as tractions. This
development was for stress analysis of free-edge delamination specimens under uniform
longitudinal strain and is not applicable to damage cumulation in laminated plates of
arbitrary geometrical configuration. Hong [1988] developed a consistent shear
deformation theory in which the shear forces in each lamina depend upon the shear
deformation of all the laminae. Hong's analysis was for dynamic response of laminates
and ensured continuity of tractions at interfacess. However, Hong assumed the
transverse displacement to be independent of x, coordinate i.e. the thickness of the

lamina is assumed to stay constant.




The objective of the current research program is to develop a procedure capable of
providing good estimates of interlayer and intra-layer stresses so that cumulative
damage criteria based on stress distribution can be used to predict damage. Pagano's
theory [1978] assuming the in-plane stresses to vary linearly over a layer or sublayer
had been shown to give excellent results for four Jayer laminates. However, the
soultion procedure employed by Pagano could not be applied to a larger number of
layers. The finite element method has proved to be a powerful tool for obtaining
numerical solutions to boundary value problems including the bending and stretching of
the plates. To apply this method to obtain numerical solutions and to develop
alternative solution strategies for Paganos theory we felt it necessary to write the
governing equations in a self-adjoint form so that the general procedures for
development of variational principles for coupled linear problems could be applied. A
brief review of earlier work on the laminate theory is given in Section II. Section III
contains a summary of Paganos equations. In Section IV it is shown that Pagano's
equations must be restated in a modified form to constitute a self-adjoint system. A
modification, involving a reduction in the number of field variables is proposed.
Variational principles governing Paganos theory are developed including various
extensions and certain useful specializations. Section V describes a finite element

formulation. Section VI contains some examples of application.




SECTION 1I
LITERATURE REVIEW

2.1 Theory of Laminated Composite Plates

In essence, plates are three-dimensional solids. The advantage of being able to treat
them as two-dimensional problems has been the primary motivation for the
construction of plate theories. As the use of fiber-reinforced composite laminates is
being extended to various engineering fields, a considerable amount of work has been
done over the past few decades to develop a reliable theory of laminated plate.
Recently, Al-Ghothani [1986] and Hong [1988] presented reviews of the earlier work on

this subject. Existing theories may be categorized into three groups:

1. Classical thin plate theory
2. Higher order theories
3. Discrete laminate theories

The first two theories assume the displacements in a single power expansion of the
out-of-plane coordinate through the thickness of the laminate, whatever the number of
layers. On the other hand, the third group of theories treats each layer as a homogene-
ous, anisotropic plate and combines field equations of each layer through proper conti-
nuity conditions between layers.

In this Section, a brief review of some of the laminate theories described above is
presented as an update complementary to the ones by [Al-Ghothani 1986] and MHong
(1988). Throughout, standard index notation is used, in which Latin indices take on the

range of values 1,2,3 and Greek indices take on values 1 and 2.




2.1.1 Classical Thin Plate Theory (CPT)

Classical plate theory of composite laminates follows the same philosophy as
employed in the homogeneous isotropic thin plate theory. In developing the theory, the
displacement field through the thickness of laminate is assumed to be such that the
plane of crosssection before bending remains plane and perpendicular to the midsurface
of the plate during deformation. In addition, it is assumed that the variation of
lateral displacement through the thickness and the stress normal to the midsurface are

negligible. A mathematical representation of these assumptions is

u (x) = u‘;(xB) - X,w (1)
u,(x) = w(xB) (2)
g, =0 (3)

where ul are the components of in-plane displacements of the midplane. With this

displacement field, the kinematic relations are

_ 1,0 o
€ = '2_(“01.3 tup ) — X, W (4)
€;=0 (s)
€,=0 (6)

Apparently, the first complete classical laminated plate theory is due to Reissner
[1961] In analyzing an angle-ply laminate of two layers, it was noticed that coupling
of bending and stretching exists unless the material properties are symmetric with
respect to the midplane. Stavsky [1961] further investigated this phenomenon for a
multi-layer plate. Dong, Pister and Taylor [1962] extended this approach to the
analysis of anisotropic laminated shells.

The classical laminated plate theory neglects the effect of transverse shear
deformation, implying infinite shear rigidity, ie., leading to overestimation of plate

stiffness. As a result, the theory gives an underprediction of lateral deflection.
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Naturally, the error becomes larger as the thickness of plate increases. 1t was pointed
out [Pagano 1969, 1970, Srinivas 1970] that the transverse shear effect is more
pronounced in composite laminates because the ratio of shear to Young's modulus is

lower for these materials than for conventional isotropic materials.

. 2.1.2 Higher Order Theory
As noted above, it is clear that realistic transverse shear variations cannot be
achieved by theories based on the assumption of plane cross section. This assumption

has resulted in an inaccurate prediction of in-plane stress distribution, especially, for a

laminate made of layers with different material properties or differently oriented
material axes. The need to include the effects of such local deformation has
stimulated development of theories that use higher order terms in the assumed
displacement field.

Most of these theories are based on an assumed displacement field. As indicated
by Al-Ghothani {1986] these theories can be discussed within the framework defined by
the following displacement field assumption.

ui(xj) = u:’(xﬁ) +x,6(x) + x§ wi(xﬂ) + x: §i(xp) @)
In the expression (7), it is worth r " .g that the terms including even and odd powers
of x; represent the symmetric and antisymmetric modes, respectively, of the in-plane
displacements through the thickness. Of course, powers higher than the third can be
included. Theoretically, as the degree of the polynomial increases, the displacement
components can be approximated as closely as one wishes. However, there are practical
limitations to the degree of the polynomial that can be used. Also we shall see that
in composite laminates there is in general discontinuity in gradient of displacements at

the interfaces of dissimilar layers. This makes polynomial approximation very

difficult.




Whitney [1973] first proposed a higher order theory with quadratic polvnomial
functions for in-plane displacements (u,) and linear functions for out-of-plane
displacement (u,) to represent the first antisymmetric shear mode and non-zero normal
strain. Whitney [1974] also presented another higher-order theory, in which linear
variation of in-plane displacements and quadratic variation of normal displacement
through the thickness were assumed. This was used to analyze laminated cylindrical
shells with moderate radius-to-thickness ratio under static loading. Nelson [1974] used
quadratic functions for both the in-plane and the out-of-plane displacements. Such a
displacement field would model the effect of normal strain more precisely. In the
higher-order theory proposed by Lo [1977], cubic functions for in-plane displacements
and quadratic function for normal displacement were assumed. With this displacement
field, it was claimed that the level of truncation is consistent in the sense that the
transverse shear strains due to in-plane displacements and normal displacement are of
the same order in X,, From the application of the theory to thick laminated plates in
cylindrical bending, it was shown that accuracy of in-plane stress distribution through
the thickness could be considerably improved, except at the interfaces of the laminate.

Although higher order theories were, to some extent, successful in incorporating the
effect of higher shear modes, the solution process was costly because more field
variables were involved. To overcome such difficulties, a simple higher order theory
was developed [Levinson 1980] using higher order terms for the in-plane

displacements, but assuming u, to be constant over the thickness of the plate, ie.
3
u(x) = u:(xp) + x3¢°(xp) + x;’\pa(x B) + X, §a(xp) (8)
u,(x) = wlxp) 9
This idea was first proposed by Levinson [1980] for the homogeneous, isotropic

plate and extended to the laminated composite plates by Bert [1984] Imposing the

stress free plate surface conditions on this displacement field, two field variables




¥, and & we

u

re eliminated to give

X
= ° + —ni.—i 2
u ua X3 [ 3 h) (¢a

3 w(xp)

+ w'a) (10)

(11)

where h denotes the thickness of laminate. Equations (10) and (11) still include the

effect of higher-order terms. This theory was used [Bert 1984, Reddy 1984] to analyze

angle-ply and cross-ply laminated plates and it was reported that accurate results were

obtained in predicting transverse shear stresses. A comparison of various theories is

given, in summary form, in Table 1.

Table 1: A Comparison of the Assumptions in Some Higher Order Theories
| In-plane | Out-of-plane | Out-of-plane normal
| strains | shear strain | strain
------- D T T T P PRSI
Vhitney| | |
et al. | Quadratic | Linear | constant
[1973] | | |
------- D D T Rt etk T Iy g Sy QS A P
Vhitneyl| | |
et al. | Linear | Quadratic | Linear
{1974] | | |
------- D U S
lNelson | | |
et al. | Quadratic | Quadratic | Linear
[1974] | | |
------- D e e e T R L b T T
Lo | | |
et al. | Cubic | Quadratic | Linear
(1977) | | |
------- D R et e e S L L L r r Ty

The higher order theory has two critical drawbacks. First, it is incapable of

accounting for local deformation accurately because local deformation depends on the

staching sequences of layers and elastic properties of each layer [Sun 1973) Second, it




violates equilibrium of the plate because stress continuity in the interfaces of the
laminate is not satisfied. This theoretical deficiency can be fatal in certain
applications, e.g., in-plane stress analysis or evaluation of natural frequencies of a

hybrid laminate.

2.1.3 Discrete Laminate Theory

The need to eliminate the deficiencies of higher order theory has motivated
development of several discrete laminated plate theories [Sun 1973, Srinivas 1973,
Pagano 1978). Common procedure for derivation of those theories is to treat each laver
as a homogeneous, anisotropic plate and to combine the governing equations of each
layer by using interlaminar continuity conditions to obtain global governing equations
of the laminated plate. For a homogeneous, orthotropic laminated plate, exact
three-dimensional elasticity solutions [Pagano 1969, 1970] revealed that in-plane
displacements are, layerwise, almost linear through thickness, thickness stretch is zero
even for thick laminates, and the transverse shear stresses are close to parabolic over
each layer.

Basically, the discrete laminate theories described above are based upon the same
philosophy, i.. assumption of layer-wise linear variation of the in-plane displacements
even though the final form of the governing equations is different. Also they do not
satisfy plate equilibrium. Stating that theories based on assumed-displacement field are
not reliable for stress analysis of laminates especially where the stress gradient is large,
Pagano [1978] developed a discrete laminate theory based on the assumed-stress field
using Reissner’s variational principle. In-plane normal stresses were assumed to be
linear through the thickness of each layer and other stress components were obtained
from three-dimensional equilibrium equations. In this theory, all six stress components
are, in general, non-zero and continuity of stresses in the interfaces of the laminate is

exactly satisfied. Displacement continuity conditions are also satisfied.

10




In practical applications, a laminate may be composed of numerous layers. Even
though discrete theory may provide a reliable tool in predicting precise local behavior,
the problem becomes intractable as the number of layers become large. To overcome
this difficulty, Pagano [1983] developed the global-local model in which the cross
section of a laminated plate is divided into local and global portions. For the local
domain Pagano's theory [1978] is used while a higher order theory is adopted for the
global domain. A variational principle was used to obtain governing equations of the
plate. This dual model is expected to relieve the burden of handling extremely
complicated problem, giving precise stress resolution in the local domain [Pagano 1983]
However, in dividing the region into the local and the global domains, technical
difficulty remains because the critical portion is not always known in advance.

As an improvement upon the discrete laminate theory, Hong [1988) developed a
consistent shear deformation theory of laminated plates and applied it to vibration and

transient response. Hong [1988] ensured interlaminar traction continuity in his theory.

22 Analysis of Free-Edge Delamination

Due to the presence of singular interlaminar stresses near the laminate
free-boundary, edge delamination is observed to occur under incremental axial strain.
Delamination can be simply interpreted as separation of laminae from each other in the
laminate, and can occur under static, impact or fatigue loading conditions. Based on
the discrete laminated plate theory, there are many computational techniques developed
to calculate the stress components in laminated composites based on either
displacement-based or stress-based approaches to predict free-edge delamination.

Investigations of the free-edge problem were carried out by Puppo and Evensen
[1970) using a composite model essentially consisting of a set of anisotropic layers

separated by isotropic adhesive lavers. It was assumed that the isotropic layers,
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developed only interlaminar shear stresses, between the anisotropic layers. It was
reported that a sharp rise of the interlaminar shear stress could be observed in finite
width laminates. However, the simplicity of these elastic formulations precluded
calculation of the transverse normal stress and the problem became more complicated
when more layers were involved.

In an attempt to approximate the interlaminar normal stress, a simplified
formulation was developed by Pagano and Pipes [1973] for the free-edge problem in
laminate elasticity. The strategy was to use solutions along the longitudinal midplane
of the laminate based upon classical laminated plate theory in conjunction with an
assumed distribution of o,,. One could then compute the force and moment resultants
caused by the interlaminar stresses on any plane z=constant through consideration of
static equilibrium. The maximum interlaminar normal stress at the free-edge was thus
expressed in terms of the transverse stress in the y-direction calculated from the
laminated plate theory. This assumed distribution, however, was based solely on statics
considerations and contained no description of the influence of material and geometric
parameters on the interlaminar normal stress [Pagano 1973]

Another approximate elasticity solution proposed by Pipes and Pagano [1974] was
based upon displacement-equilibrium equations for an anisotropic elastic medium.
Assuming the transverse stresses in the y, z directions to vanish, the equations were
written in terms of the single variable U (axial displacement function). This yielded
components of displacement, strain as well as remaining stress fields in the form of
sinusoidal-hyperbolic series. However, violation of stress equilibrium in the transverse
directions as well as neglect of the interlaminar normal stress constituted major
drawbacks of this scheme.

Pagano [1974) derived another approximate method for determination of distribution

of the interlaminar normal stress only along the midplane of a symmetric, finite
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width laminate. The approach was based upon a modified version of a higher order
theory proposed by Whitney and Sun [1973] which recognized the effect of shear
deformation through inplane rotations as well as the thickness strain in the assumed
displacement field. However, like the approximate theories discussed previously, none
of them was able to determine the complete stress field near the free-edge.

A boundary layer theory for laminated composites in plane stress was developed
by Tang and Levy [1975] from the three-dimensional theory of anisotropic elasticity.
By expanding the stresses, displacements, body forces and surface tractions in power
series of the half-thickness of a lamina in the equations of equilibrium, compatibility
and boundary conditions, a sequence of systems of equations was obtained. The
complete solution was obtained by combining solutions of the interior domain based on
the classical lamination theory and those from boundary layer and matching a set of
appropriate boundary conditions. This formulation provided a way to obtain analytical
solution for estimating interlaminar normal as well as shear stress distribution, but
became oo complicated with increasing number of layers.

In order to have displacement as well as stress continuity, a mixed formulation is
sometimes used. Unlike the elastic approximations discussed previously, Pagano [1978]
developed an approximate theory for a general composite laminate based upon an
application of Reissner's variational principle. The assumption was that the inplane
stresses are linear in the thickness coordinate while the transverse stresses derived from
equilibrium consideration are cubic. Substitution of stress components based on the
differential equations of equilibrium and the strain energy density of an elastic
anisotropic body into the Reissners variational principle, integration with respect to z,
and setting the first variations equal to zero yields the appropriate field equations and
the boundary conditions. The field equations, which consist of the elastic constitutive

relations and the differential equations of equilibrium, must be satisfied within each




layer. If a laminate or a single lamina is viewed as an assembly of N sheets, each
having a finite thickness and required to satisfy force and moment equilibrium, the
analysis leads to a set of 23N algebraic and ordinary differential equations which had
to be solved simultaneously. Based upon the assumption that the stress field in a
free-edge delamination coupon is independent of the longitudinal axis, Pagano [1978]
further specialized the theory to the f{ree-edge problem by reducing the stress field
determination to the solution of a one-dimensional problem. However, the number of
layers considered in the solution process could not exceed six. The manner in which
singular behavior was described could not consider larger number of layers.

Pagano [1983] introduced a global-local model, which was able to define detailed
response functions in a particular, predetermined region of interest while representing
the remainder of the domain by effective properties. This reduced the number of
variables in a given problem. In this model, for the global region of the laminate,
potential energy was utilized, and the displacement compo;aents were based upon the
assumption given by Whitney and Sun [1973} The Reissner variational principle
described in Pagano [1978], however, was applied for the local region in which a
thickness distribution of the stress field satisfying equilibrium equation within each
Jayer was assumed. A variational principle was then used to derive the governing
equations of equilibrium for the whole system. HHowever, for application to
delamination of laminated composites, it is sometimes hard to identify the location
where the delamination will occur in the delamination process.

Pipes and Pagano [1970] used the classical theory of linear elasticity to formulate
the problem of free-edge delamination of a strip under uniform axial strain. Allowing
for material symmetries and uniform extension, the transverse components of
displacement were assumed to be independent of the longitudinal coordinate. The three

coupled elliptic equations for the displacement functions were solved using a finite
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difference solution technique to approximate the interlaminar stresses. Delamination
was assumed to be primarily due to the high shear stress near the free-edge and the
interlaminar stress field was found to be an edge effect which was restricted to a
boundary region approximately equal to the laminate thickness.

A three-dimensional finite difference analysis was carried out by Altus, Rotem and
Shmueli {1980] to examine the free-edge stress field. The displacement equilibrium
equation was solved by using central difference method while for displacement or
traction-free boundary conditions as well as interfacial continuity conditions, either
forward or backward difference scheme was applied. Convergence of the solution was
expected providing a reasonable displacement field was assumed initially. Although a
complete stress field was available due to three-dimensional characteristics, an iteration
scheme could be a serious inconvenience.

Wang and Crossman [1977] used 392 constant strain triangular elements with 226
nodal points to model the laminate boundary region through a crosssection of
quasi-three-dimensional boundary value problem with orthotropic material properties
only. The functional dependence of the assumed displacement field was of the same
type as in Pipes and Pagano's analysis [1970] The traction-free boundary conditions
cannot be satisfied in this analysis.

A quasi-three-dimensional finite element analysis was carried out by Raju and
Crew {1981] using eight-noded isoparametric elements. In order to approximate the
stress singularities, a polar mesh was introduced near the intersection of interface and
free-edge and a log-linear relationship between stress components of o,, and o, and
the radial distance for the singular power was postulated. The power of singularity
was determined by fitting a straight line to log-linear plots of stresses calculated from

several mesh refinements near the interface of the free-edge and the radial distance.
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Whitcomb, Raju and Goree [1982] further pointed out that the disagreement for
both magnitude and sign of the interlaminar normal stress distribution among various
numerical methods could be attributed to the unsymmetric stress tensor at the
singularity. In their approach, the problem was modeled by eight-noded isoparametric
elements. It was concluded that finite element displacement models were capable of
giving accurate stress distributions everywhere except in the region within two
elements of a stress singularity. In this analysis, the traction-free boundary conditions
cannot be satisfied.

Chang [1987] wused pseudo-three-dimensional (finite element analysis to solve
composite coupons by satisfying the traction-free boundary conditions, continuity of
displacements and tractions at interfaces. However, the stress-equilibrium relations were
not satisfied. =~ Dandan [1988] developed a finite element analysis of laminated
composite axisymmetric solids and used it to solve for stress distribution in laminated
composite coupons. However, in this work, continuity of tractions was 'hot satisfied.

Rybicki [1971] used a three-dimensional equilibrium finite element analysis
procedure, based upon minimization of complementary energy, to solve the free-edge
stress problem. However, this method involved very large matrices and was
computationally expensive, and even at that did not yield a continuous stress field.

In Pian’s hybrid model [1969] stress equilibrium in the interior of the elements as
well as displacement continuity along interelement boundaries are ensured, but the
interelement stress continuity is satisfied only in a weighted integral sense. Following
Pian's formulation, Spilker [1980) developed a special hybrid element for the edge-stress
problem in cross-ply laminates. In his work, the assumed stress field was made to
satisfy exactly the continuity of traction across interlayer boundaries as well as
traction-free conditions along exterior planes of the laminate. A comparison of various

methods for solving the FED (Free-Fdge Delamination) problems is given in Table 2.
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Table 2: A Comparison of Various Methods for Solving the FED Problems

- e - e e = e e e W A e e . . = = e = e = e e e e e e e o= == -

0.0 0T T Ty

Reissner’'s variational
principle--mixed method

0,007 Ty

o.xa’ya-zfyzfxzr.\y

O’xO'yO’Z‘T szszxy

Finite element method:
constant strain triangle

axayozTsz xzfxy

Finite element method:
8-noded isoparametric

element

0,007 Ty

. e - - = = = e S P e = > e T e o T e S R = = = e e . = -

Finite element method:
equilibrium stress approach

Finite element method:
hybrid assumed stress model

Finite element method:
Q23 element

UxayazTszxzfxy

32 Rybicki
36 Spilker
5 Chang
6 Dandan

Finite element method:
Axisymmetric element

O’XO’yO'zTsz szxy

23 Need for Solution Procedures

Recent development in the analysis of composite laminate coupons under uniform

extension indicated that the high interlaminar stresses near the free edge are mainly

responsible for delamination failure, [Pagano and Pipes 1973] Before delamination can

be predicted on the basis of a stress-based failure criterion, it is essential that a highly
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reliable estimate of interlaminar stresses be available for the given situation. [lowever.
it has been difficult to obtain solutions for the stress field because of the anisotropy as
well as heterogeneity of the material, and the difficulty in satisfying traction-free
boundary condition in a solution procedure based on the displacement formulation.

Some of the solution techniques are only applicable under certain conditions. For
this reason, a complete stress distribution is hard to obtain. Although results calculated
from various approaches have demonstrated similarities in some cases, discrepancies do
exist in the magnitude as well as sign of the computed interlaminar stresses near the
free edge of laminate coupons. One possible source of these discrepancies is that, in
these methods, the continuity conditions for displacements and tractions across laminate
interfaces along with traction-free boundary condition along free-edges characteristic can
only be approximated to a limited extent. Chang [1987] solved the problem of a
free-edge specimen by a pseudo-three-dimensional finite element procedure based on
minimization of potential energy formulation while satisfying continuity of tractions
and displacement. However, this theory is not general enough to apply to a laminated
plate.  Also the stress-equilibrium relation of composite layers is violated. Dandan
(1988] used axisymmetric elements to solve the problem of free-edge coupons while
continuity of tractions was not satisfied. Table 3 gives a comparison of theory of
Pagano [1978] with those of Chang {1987], Hong [1988], and Dandan [1988).

In Hong [1988] theory, the interfacial transverse stresses are not considered as the
direct stresses in the variational formulation. The tractions at the interfaces are
assumed to be continuous in the sense of interpolating traction components from one
interface to another. The traction-free boundary conditions also are not satisfied.
Pagano's [1978] approximate theory for a general composite laminate, based on an
application of Reissner's variational principle to define the six stress components. has

been the basis of solutions to some problems and has been used as bench mark for
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Table 3: A Comparison of Theories by Pagano, Chang, Hong, and Dandan
IDisplacement | Traction | Application | Application
| Continuity | Continuity | to | to
| | Coupon | Laminated Plate
------ R i e e T T
Paganol| yes | yes | yes | yes
[1978] | | I l
—————— D e T LT T T
Pagano| yes | yes | yes | yes
[1983] | | | |
------ e i s S
Chang | yes | yes | yes | no
{19871 1 I | I
------ L e e A e el e et R PR
Hong | yes | yes | yes | yes
(1988] | I | I
------ B e e
Dandan| yes I no | yes | no
[1988] | | | I

validation of finite element procedures. This theory appears to be an excellent
candidate for successful determination of stresses in composite laminates. The finite
element method can handle a problem of complex boundary conditions in a
straight-forward manner and modern computers can easily handle a large number of
algebraic equations. To apply the finite element method effectively and to develop
alternative strategies, it is desirable to write the governing equations in self-adjoint
form so that the general procedure for development of variational principles for

coupled linear problems can be applied.
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SECTION III
PAGANO'S THEORY OF LAMINATED PLATES

3.1 Introduction

In this section, equations of Paganos theory [1978] of laminated plates are
summarized. Starting from the equilibrium of an elastic solid, equations of generalized
equilibrium in two dimensions are introduced. Paganos theory [1978], based on an
assumed equilibrium stress field, is stated along with derivation of constitutive relations

for generalized displacements.

32 Equilibrium of an Elastic Solid

For a three-dimensional solid, the differential equations of equilibrium for linear

elastostatics are
+f =0 12)
where o, are the components of the symmetric Cauchy stress tensor and f, are the

components of the body force vector per unit volume.

3.2.1 Generalized Equilibrium of a Two Dimension Plate
We consider a plate of uniform thickness h in which the plate is assumed to be
homogeneous, linear elastic. For the Cartesian reference frame used, the origin is

located in the midsurface of the plate (x,—x, axes) with X, axis normal to this plane,

but the range of x, is limited to the thickness of the plate ie, x, = %

V|

To reduce the equilibrium to an equality in two dimensions, the equilibrium

equations are integrated over the transverse dimension. Equation (12) and its first
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moment are integrated over the plate thickness. Neglecting the body force components:

h L]
2 2
f T 5e9%; + f 0 ,339%; = 0 (13)
_h g}
F) 2
h b
2 2
f 0 3009%; + f 03,,9%, = 0 (14)
_h -h
2 2
h b
2 2
f o'aMx:‘dx3 + f 05 %, d%; = 0 as)
_h -h
2 2
Defining
h
2
voz = f 030dx3 (16)
iy}
2
L3
2
Naﬁ = f o.orﬁdxl (17)
-h
2

3 9%; (18)

+
i3 = 93ty (19)

o, = ois(—%) 20)

The integral form of the generalized equilibrium equations (13), (14), and (15) may be

written as

Nog+t(@,-0)=0

BB o3 (21)
V,_ +lo), -0)=0 (22)
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h, + -
Moﬁ,ﬁ + 5(003 + 00’3) - Vo =0 (23)

where V_, N4, M, are components of the force resultants.

3.3 Kinematics
For small deformation, the kinematic relations for linear elasticity are:

_1 _
€ = 3(“.,j+“j.i) =u

i (24)

ij)

where € is the symmetric strain tensor. For a laminated plate subject to bending and

stretching, in order to reduce the problem to one in two dimensions, the functional

dependence of the displacements upon the transverse coordinate x, is made explicit.
Often, the in-plane displacements are assumed to vary linearly within the plate.
Mathematically, for a plate, this can be expressed as

u (x)=v, (xp) +x,8, (xp) (29)
where u_ are the components of inplane displacement vector; v, are the displacements
at the midsurface of the plate; and ¢  are the rotations of the crosssection of the

plate. Substituting (25) into (24), the strain-displacement relations for the plate become

(0)

€5 = € t X3K, g (26)
e.=Lw _+u ) Q7
al 2 a,3 3.0

€, =u,, (28)

where we define:

o __ 1,
€0B=—

o T Vool = Viap 29)

(30)

il
| =
o~
o
2
®
+
sl
»
-
A
]
)
)
2

Koﬁ_ 2
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Many approximate theories use (25) or higher order polynomials in x, as the starting

point. In Pagano's theory, (24) is used as the basis of evaluation of generalized
displacements from strains defined through constitutive relations by the assumed
equilibrium stress field in each lamina. No independent assumptions regarding variation
of displacements over a layer or over the laminate are made. This is discussed in

Section 3.6.

34 Constitutive Relations of a Monoclinic Material
For linear elastic material, the general stress-strain relationship is

u El)klekl (31)

where €,,, E, are the components of the infinitesimal strain tensor and the isothermal
elasticity tensor, respectively. In the absence of body couples, due to symmetry of o,
and €, and the existence of an energy function

E, = Eg = By = By (32)

and the number of independent constants is 21. For a monoclinic plate, with

symmetry about x, = O, the number of independent constants is 13 and the reduced

stress-strain relationship can be written in the form

o,.=E

aff oBy&e & + E

af33 33

003 = 0301 = 2Ea3BJ€ﬂ3 (33)

c..=E. € _ + E

33 33af"0p 3333 33

Inverse relationship of (33) can be written as
=§

€ +S

of oBy& uﬁ33 33
€3 = €30 = 25,35:,0,; (34)
€33 ™ 53308%08 * 3333733

where S, are the components of the elastic compliance tensor with the properties

S =S =S =8§

1)k ki) i'13) ijik
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3.5 An Approximate theory

3.5.1 Equilibrium Stress Field

Equations (16) through (18) express V_, N, , M_, as force resultants of the
components of the stress tensor, determined over the plate thickness. The inverse
relationship, ie., stress distribution for given V_, N, , M ; is not uniquely defined.
However, if an assumption is made regarding distribution of some of the components
of o,, the distribution of the others can be determined. For homogeneous plate,

Reissner assumed linear distribution of o, over the thickness. If o, = o, + H_;x,,

substitution in (17) and (18) give

- Noﬁ
O = . (35)
and
12M
H, - —% (36)
h
ie.
- 1I2M . x
Oup = Oog + —;ﬂ—:’- a3mn

The first two equilibrium equations, in the absence of body force, in (12) are

s ¥ To33 =0 (38)

Integrating (38) over the thickness of the plate,
X
.= f (0, 0% + O, (39)
g |

Substitution of (37) into (39) gives

X

12x

3 = hy -~

g, - f (- o Mghdx;y + 0y - (x; + -5) O ops (40)
_h

2

Substitution of M_,, from (23) into (40), we have
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X 12x3[V°—%-(a':3 + o)) _ e
. = - > dx, + o, - (x, + 7) O.sp (41)
b h
2
From (41), we have
3 h 2x3 2 _ h, P
0'“3 - K [Va - SSJ [1 - (T)] + 0'013 + (x3 + i) 'Ta (42)
Here we define
+ —
po = 0-03 - 003
and
h, + -
So = —2—(0'03 + 0’03)
From the third equilibrium equation in (12), integrating along the X, axis yields
O33 = T35 - ] (03,09, (43)
h
F)
Substitution of (42) into (43), equation (43), combining with (43), yields
(el +07) x? 2 x
33 33 + ~ 3 h + - 3 3
033 = 2 _{(acd.a - amJ.or) (ﬁ; - ?) + (o'orS,« + 00:3.0) [_l;? - _4-]
3 X 4){3
- +y X3 3
+ ?(0'33 - O’JJX—l-l— - ——5']} (44)

3n
Following Reissner's assumption that in-plane stress components are linear functions
of x, coordinate, Pagano assumed the in-plane stress distribution to be given by (37)

with (35) ie.,

N 12x M
o h h3

but derived expressions for o, and o, in a form somewhat different from Reissner's.
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3.6 Pagano's Equations of Equilibrium

Defining

h
2
N,, = f T, dx, (46)
“n
2

L]
2
M;; = f 033 %3 9%,

(47)
_h
2
substitution of (44) into (46) and (47), with consideration of (22), yields
N - Dot o) s Ko =) (48)
N33 = 3933 F T330 * 159030 7 Tase 8
h o+ - n?, + -
M,, = Tﬁ(oaa.a +o )+ -1-6(033 - 0, (49)
Equation (41), with (35) and (22), gives
+ - 2 2
. % (o, +0) 3V, o 4x
Uu3 - (Ua:’ - UGS)T + _"i—'* (12-1';—2- -1) + >h ¢ :2—) (50)
Substituting (48) and (49) into (44), we have
1, o+ . -y 125 1, + - 405 6x,
G o)l . -1] + 7(0'33 - 0y,) [—h3 -
. 2 3
, Wy 4 1My, 2, B s1)
2h N hZ R 3
. 20 .
Adding (22) and ra times (49)
20M h -
33 - + +
Voo * = +(oy, - 0;) - -6—(0"3'“ +0,.,)=0 (52)
. 60 .
Adding (22) and < times (49)
60M - -
Vo, * h233 + Soy, - o)) - —;—(0:3'0 +0,,)=0 (53)
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These two equations may be used to replace (22) and (49). Summarizing, Pagano's

equations of plate equilibrium are:

Ngg+ (0,700 =0 (54)
20M
Vas B o - el e - 9
v h '
Mg -V, + —12-‘-(0:3 +0.)=0 (56)

We note here the introduction of stress resultant M,,. This and the force resuitant N
are defined by (47), (46) and, for the assumption of o linear over the plate, by

approximation equations (48) and (49). Equation (49), as we have shown, may be
replaced by (53) yielding the following equations as completely defining Ny, My, for

Pagano's theory:

Wo,, + o) 2

33 33 h - +

37T gt 1% Tad =0 57
60M33 - + h, - +

V., + " + oy, - 0,) - —2-(0'“3# + 003'“) =0 (58)

3.7 Constitutive Relations for Generalized Displacements

Substitution of (45), (50), and (51), taking account of (34), into the variational
equation of Reissner Complementary Energy and integration with respect to X, leads to
the appropriate field equations 2~d boundary conditions. In the derivation of the
governing equations, the integration with respect to x; gives rise to weighted average

displacements at the surface of each layer. Pagano introduced the notation
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h2
2
- f f 2 gy
‘h2 h 3
. h 2 2x 2
f = f f —2 £ ax
2 h h 3 (59)
2
. h2 4%
f = f f -3 2 dx,
-h/2 hz h

where f may represent any function of x, The constitutive relations given by Pagano
{1978], neglecting the expansional strains, were derived by integrating with respect to
X, the quantities €., X;€,5. €5, X,€5, X3€33, Xo€y3, €55 Xs€,,, and Xx2€,. In evaluation of
the integrals, repeated use of integration by parts and substitution for stresses o ,, 0y,

for equation (50), (51) was required. The resulting equations are:

h
2
I ptny => g = 360N + Supaaar) (60)
3
L.}
2
f X,€,00%, => Ul g = é(suh&M s+ SagaaMyy) (61)
4
.3
2
f €,,dx; => uj - u; = S3308Nas * S3333N3s (62)
3
3
f Xy€330%; => Uy = uy 4 Uy - %53303Moﬁ - %53333M33 (63)
3
L}
2
f xie” dx, => 6“; = ~S3308Nas " %53333(0';3 + 0y - %53333N33
4
+ S(u; - u)) (64)
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b
2
3 _ A 1, + - 2 2
f X3€3,0%; => uy = '5(“3 +uy) - op S330Map ~ 5 S3333Mas
g 3
2

N '{3—553333(“;3 -0y (65)
1
2
f €,9%, => u, = 18150353 s " 2(u -u) (66)
3
h
2
f X6 ,dx, => %uh——;-ﬁo = %S“M(O'; - 0;3) - %(u: +u) (67)
3
L]
2
f x;€ ,dx, => u,_ 185503‘,3(0'; + 0gy) + 8 Si 5383 Vs %—uo
3
- %(u: - u) (68)

The above equations contain quantities u and u; which are apriori unknowns.

Combining (63) and (65) to eliminate u; + u, gives

- = 4 8 h + -
3u, - u, = ﬁl‘sasaaMaa + ‘7'1753333M33 - 383333(0'33 -0y (69)

Combining (62) and (64) to eliminate u; - u; yields

. 12 . h -
6u, = 2533‘,HNMi + —5—833331\33 -3 3333(0' + 033) (70)

Combining (66) and (68) to eliminate u] - u_ gives

A - 4 _ 8 -y 32
Yia T WM 3% T 15 Sa3pl@py + Tpy) - S0 o383 8 1)

Equations (60), (61), (69), (70), and (71) are Paganos constitutive equations for

displacement functions in terms of force resultants and surface tractions.
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3.7.1 Equations of Displacement at the interfaces and Interface
Conditions
Equations (46) through (71) apply to each lamina in a laminate. The positive or

negative signs of the superscript denote, respectively, the top or the bottom surface of

the lamina.

3.7.1.1 Interface Displacement Equations

The displacement at the interface can be obtained [Pagano 1978] by combining
some of the equations (60) through (71). Equation (67) gives u] + u_ in terms of
displacement functions and surface tractions as

+ - h - - 2h + -
D = T '_3‘50333(0'33 - 033) (72)

Equations (66) and (68) both involve u - u_. Combining these two equations gives

+ - 3~ 1-— 2h + -
u, - u_ = 2h[—§u3_a + §u3-° + =ul+ —5—50353(0";3 + 0’33) (73)

4
B gsaaaavﬁ

From (72) and (73), the in-plane displacements at the interfaces are:

ul = i, - da, - ) -l - 26

+ 450353[(4‘7;3 3-00.;3)1, i _:i(%] (74
u = h(zu, - -;-530 - —2%11;) - (-f—:-u;'a - ;ﬁa)

- 450353[.(5%@_ - _1\%] (75)

Clearly, other combinations of (66) and (68) are possible. Combining (62) and (64) to

eliminate N_, yields

S h
T uy = By 2SNy oS

CEEER RNy 1333F33 + 03) (76)
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Combining (63) and (65) to eliminate M_; leads to

- 15 ~ 3- 6 h + -
u, +uy = -2—u3 - 3 - ~7TS3333M33 + —1—4—53333(033 -0,,) an

From (76) and (77), out-of-plane displacements at the interfaces are:

+ 3/ = 3 S3333 + =2
uy = (Guy - u) + Suy v S2El60y, + oy JhT - ThNG; - 30My,] (78)
- o 3.t .3 3¢ _ Sy, - + Y2
u, = Z(Su3 - u,) - S5 - e 60, + o;)h" - 7hN,, + 30M,,] (79)

3.7.12 Interface Continuity
Using superscripts in parentheses to denote the identifying lamina number, the

condition of continuity of displacement and traction at the interfaces implies that for

k=1, 2, 3, , .. . N-1,
(k) +«{k+1)
T3 =03 (80)
ut4,/2) = W e, /2) (81)

where t, is the thickness of the kth layer.

3.7.1.3 Prescribed Tractions

On interfacial planes, tractions or displacements may be specified [Pagano 1978] in
the case of a cracked or unbonded interfacial region. Symbolically, if tractions are
specified,

- a-(k)
k) i3

(82)
o_*(k* D a_*(k* 1)

13 &)

for k=1, 2,3, ,. . . N4




3.7.1.4 Prescribed Displacements
Pagano [1978] aliowed for specification of displacements at interfaces i.e., for k=1,

2,3 ., ...N-1,

uMe/2) = &

(k+1) (k+1) (83)
+ (k+1

w72 =

The field equations, which consist of the elastic constitutive realtions, equations of
equilibrium, and equations of continuity in displacements and tractions, must be

satisfied within each layer for the composite laminated plate.
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SECTION IV
VARIATIONAL FORMULATION OF PAGANO'S
THEORY OF LAMINATED PLATES

4.1 Introduction

To implement the theory described in Section III in a finite element analysis, a
self-adjoint form of the governing equations along with consistent boundary conditions
is desirable so that Ritz type variational formulation can be employed. In this section
we outline the basic procedure developed by Sandhu and Salaam [1975] and Sandhu
[1976] for variational formulation of linear problems and then proceed to apply it to
Pagano's theory of laminated composites.

It is shown that Paganos equations as originally stated and described in Section III
do not readily lend themselves to a self-adjoint formulation. A modification, reducing
the number of field variables, is introduced to ensure a self-adjoint formulation. A
general variational principle for the problem is stated. Extended variational principles
are developed using self-adjointness, in the sense of the bilinear mapping used, of the
operator matrix. Specializations to reduce the number of field variables by requiring
that some of the field equations be satisfied exactly are derived. The general approach

provides a basis for development of consistent finite element approximation procedures.
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42 Basic Variational Principles

In order to develop variational formulations for the multivariate problem of
laminated composites, it is necessary to introduce some definitions and procedures. We
summarize here the approach introduced by Sandhu [1976] for a self-adjoint linear

operator.

42.1 Boundary Value Problem
A typical boundary value problem is defined by the set of equations

Alw) = f on R,
(84)

Clu) = ¢ on S
where R is an open connected bounded region in an euclidean space, S is the boundary
of R, and R is the closure of R. A and C are linear bounded operators. The operator

A is the field operator and C is the boundary operators

A W=V, (85)
C: W=V (86)
where V.,V are linear spaces defined over the region R and S and W.,Wg are in

general, dense subsets in V.,V , respectively. Operator A and C are linear implies

Aau+bv)

aA(u) + bA(V) for all u, veW, (87

lau+bv)

aC(u) + vQv) for all u, vEW (88)

where a ,b are arbitrary scalars.

422 Bilinear Mapping

A variational formulation of the problem seeks to set up an equivalent problem so
that the search for u,€W for known f corresponds to the search for a function F
whose stationary points are solutions to the given equations. The function is based on
use of suitable bilinear mapping B, and By such that

B, : Vp, X V,=§ (89)
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By : Vg X V=S (90)
where V_.,V; and S are linear vector spaces. To each ordered pair of vectors
u,veV, B assigns a point B(u,Vv)€S, such that:
 Bu, Vv -Bv,u 91)

Blau +bu, , v) = aB(u, , v)+bBlu, , V) (92)
Blu , av,+bv,) = aB(u , v )+bB(u , v,) (93)

where a,b are scalars. By is said to be nondegenerate if

B(u, v) =0 forall V€V if and only if u = 0 (94)

A variety of bilinear mapping have been used [Sandhu and Salaam, 1975}

423 Self-Adjoint Operator

An operator A is said to be adjoint of operator A:!W—V with respect to a bilinear
mapping Be( , ) : V X V=S if

B (u, Av) = B(v, Aw) + Dy(v , u) for all VEW ,u€V (95)

where DJ(v , u) represents quantities associated with the boundary S of R. If A ,A'

are linear, D(u, v) is bilinear in its arguments. If A’ = A, this A is said to be

self-adjoint. If A is a self-adjoint operator, Dg(u , v) is antisymmetric, ie.,

Dy(u,v) = —=D(v , u) (96)

A self-adjoint operator A on V is symmetric with respect to the bilinear mapping if

W = V and

B(u,Av) = B(v, Au) 97

Two operators A , E are equal on V if they have the same domain and range and

A(u) = E(u) for all uev
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42.4 Gateaux Differential of A Function

The Gateaux differential of a function F : V9§ is defined as
A F(u) = lin(x)%—[F(uH\v)—F(u)] (98)

provided the limit exists. The quantity V€V is referred to as the path, A is a scalar,
and if u,v€V then u+AveéV. If A F(u) exists at each point in a neighborhood of u,

(98) can be equivalently written as
d
A Fu) = HF(uH\v)u:O (99)

If the Gateaux differential is linear in v and there exists G(u)€W, a linear vector
space, and a bilinear mapping B: V X W—S§ such that

A F(u) = B(v, G(u)) (100)
G(u) may be regarded as the gradient of F at u. If B is continuous and
non-degenerate and G(u) can be identified with the residual P(u) at u, Flu) is the

potential of the operator P. This is the basis for setting up variational formulations.

425 Variational Principles For Linear Operators
For boundary value problem with homogeneous boundary conditions, Miklhin
showed that for self-adjoint, positive definite operator A, the unique solution u,
minimizes the function
Q(u) = B(u, Au)-B(u, 2f) (101)
Here the inner product was used as the bilinear mapping. Conversely, u, which

minimizes the function of (101) is the solution of the problem defined by the set of

(84). Gateaux differential of (101) yields
8,00) = lim-[ButAv , AWAV)-Butv , 20-Bu , Aw)+Blu , 26)]

= Blu, AV)+B(v , Au)-2B(v , f)

= 2B(v, Au—f) = 0 (102)
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if A is symmetric

In addition to the symmetry of the bilinear mapping, only linearity and
self-adjointness of the operator A are assumed in writing (102). The Gateaux
differential evidently vanishes at the solution u, such that Au,~f = O In order that
vanishing of the Gateaux differential at u = u, imply Au,—f = 0, the bilinear
mapping has to be non-degenerate. To prove the minimization property, the bilinear
mapping has to be into the real line and the operator must be positive. However, in
general, it is only necessary to use vanishing of the Gateaux differential as equivalent
to (84) being satisfied. For nonhomogeneous boundary conditions, Sandhu [1975] showed
that for a linear self-adjoint A and C consistent with A, an equivalent function to
the set of field equations is stated as

Q(u) = By(u, Au-2f)+B(u , Cu—2g) (103)

Consistency of boundary operators with field operators is considered in the following
sub-section. Sandhu [1975] pointed out that appropriate boundary terms should be

included in the governing function even if they are homogeneous.

42.6 Coupled Problems

If u is not a single field variable but consists of n dependent field variables, then

a linear coupled boundary value problem may be written explicitly as

n
2 Au =f onR i=1,2....n (104)
=1
n
ZCquwgI on S i=12....n (105)
it

Here A, is an element of the matrix of field operators and C, is an element of the
matrix of boundary operators such that:

A 1 W, =V, Lj=12. . .n (106)

1} 5 ,
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CJ:WS

—'VS‘ L)=1,2. . .n (107)

)
where WR_' and Wy are subspaces of VRi and VSi , respectively. (103) is completely
analogous to (104) through (105) if u is regarded as an n-tuple u={u,, i=1,.n} and A
is a matrix of operators. Similarly C,g,f have extended definitions. Then u€V,
where Vg, is the direct sum Vg = Vo +Vg+ ... Vy . A bilinear mapping B; on

Vg is defined by
n
B(u,v) = Z BRi(ui , V) (108)
i1

where By is a bilinear mapping defined on V. The matrix of operators A, is

self-adjoint with respect to the bilinear mapping if
n n
ZBR,(“J' , Ajivi)=BRi(vi , ZAU“,') + D(v,, uj) , i=12 . .n (109)
=1 =1

The matrix of boundary operators is said to be consistent [Sandhu 1976] with the
self-adjoint matrix of field operators if D¢ in (109) satisfies
n n
D{v,,u) = Bs,("i . ZC.U.u ).)—Zst(uj » Cyv) (110)
=1 =1
Substitution of (110) into (109) results in

n

n n n
ZBR,(UJ , A,-,V,) = Bni(v. , ZAU.uj)-i-Bsi(vi , ;Cuuj)_
i

st(uJ , Cjivi) (111)
P r1 !

i

Sandhu [1975) showed that the Gateaux differential of the function defined by
(103), along with the extended definitions (108) through (111), vanishes if and only if
the (104) and (105) are satisfied. The functions approximating the field variables are
required to obey certain continuity requirements so that they are admissible as possible

solutions of (104) and (105) ie. each function u, lies in the domain of the set of

operators {A,,, i = 1,2, ..n}. However, in seeking approximation to the correct
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solution by the finite element method, the region under consideration is discretized into
a finite number of elements and the field variables are represented by functions which
satisfy the continuity conditions only piecewise within each element. If the continuity
conditions along the interelement boundary are not satisfied, internal discontinuity

conditions, [Sandhu 1976) need to be introduced in the form
n
2 Cu)y =g, on R (112)
1

where a superscripted prime denotes the internal jump discontinuity along element
boundary R, embedded in the domain R and g’ are the specified values of the jump
discontinuities. Sandhu and Salaam [1975] showed that this condition can be included
explicitly in the governing function by simply adding a term and defining the bilinear

map over R as the sum of maps over individual elements.

43 Self-adjointness of Pagano's. Equations

43.1 Introduction

The field equations for a single lamina include the equilibrium equations and the
constitutive relationships. These are given, respectively, by (21) through (23) and by
(60), (61) along with (69) through (71). There are five equations of equilibrium and
ten constitutive relationships. For a laminate, however, the interfacial displacements
and tractions are additional, apriori unknown, field variables. The six surface
displacement components are given in terms of mechanical and kinematic variables by
(74), (75), (78), and (79). The field variables must also satisfy the continuity
requirement expressed by (80) and (81). Satisfying the constitutive relations (74), (75),
(78), (79), the continuity equations are replaced by relationships between mechanical
and kinematic field variables. In the following we restate Pagano's equations for a

laminate and examine their seif-adjointness.




432 Equilibrium Equations

From (21), (22), and (23), we have, for the kth layer,

V(:r) + (cr;(;) - a;(;)) =0 (113)

I o o (1o

I M8 v B o) <o (19) '
where -

6,3 48, 1o

43.3 Constitutive Equations

Equations (60) through (68) are nine sets of constitutive equations for the plate.
Fquations (62) and (64) are used to set up (70) and (76) and can therefore be replaced
by the latter. Similarly (63) and (65) can be replaced by (69), (77) and (66), (68) by
(71), (73). Restating (67) as (72) and replacing (72) and (73) by (74), (75), Pagano
used (60), (61), (69) through (71), and (74) through (77) as the 16 constitutive

equations. Equations (60), (61), and (71) rewritten, for the kth layer, are:

(%)
) 1o ® 10 &)
-Z-rz(—i_) = -ITS"“”’BN""S + ;:Syp33N33 (117)
3 K
1 U 120 0, 12 .0 &)
7T : )-Ta—s‘“,‘,ﬁh«oﬁ+-;3—5‘“,33M33 (118)
k k

3, xy ~lx) u 24 (0 ) 240, K -(x)
T(u3 —~u, ") +3_L—‘k = 3{:5"3“ .- gspsrs( PR ) (119) .
where .
r, - (8”’5% " am~é‘3—) (120)
L
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434 Operator Matrix Form of the Field Equations
Combining the equilibrium equations (113) through (115), the definitions (48), (49),
and the constitutive equations (117) through (119) along with (69), (70), appropriately

modified to apply to the kth layer, the complete set of equations for the kth layer

can be written as:

AT + B T™ + IcTeT® =0 k=1,2.,3, . ,.N (121

where [A'TV, [BTY, [CTY are operator matrices and {u'}*’, {&'}'™, {o'}* are sets of

field variables, respectively. Explicitly,
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0 0 o0 00 1t
2 1
0 0 0 00 O
0 0 0 00 O
0 0 0 10 0
(k)
0 0 0 0128}
(k)
S
~ir, 0o o oo =t
22 t
0 0 0 00 O
o -Ir. 0 00 o
2 2
0 0 0 00 O
o -5 -9 00 o
P ap

0 0 0
1
0 5T, 0
0 0 0
(i) (x)
0 _453305 _833333
Stk 7tk
12 (0
_—5‘53333 0 0
()
#p33 0 0
tk
1 0 0
12 (%) 12 (k)
O 3 Sums ~3Su33
X x
0 0 1
0 0 0
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(122)




—870 0
t
-§- 0
0 -1
t
koK)
0 -383333
t
k o(k)
0 _'5_53333
[B’fk) =
0 0
2
AR Y
12 9y 2
0 1)
3 2
_h 0 Y
120 9y 10
2 (x)
_-580373 0
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[C:](k) -

{o,l}t(k) -

» N

|
5}
T

2 (k)
“'gspm

(k)
Y3

+(k)

0

t
-E-E#k)
35 3333

_tls(k)
523333

k=1213.
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(125)




—k)

u

.
2

oK)
u
32X

Y

3, @ (k) _ "(k

3 3

~(k) —(k)
3u 3 Uy

wi® - 6u;“) (126)

(k)

Nos

(k)

N33

(k)
M,

(k)
M33

V(k)
Y

The ten sets of equations in (121) are, respectively, (114), (115), (113), (69), (70), (117),
(48), (118), (49), and (119).

4.3.5 Displacement Continuity Conditions

From the first two equations in (81), we have

u;m = u;(hl) (127)

Substitution of (74) and (75) into (127) leads to

o W_ —(k—l L)
t(3 S0 _ 1w "“’)__(_ W_ 1500y, [(4 83 g3 x, V‘

U™ 8 Use™ 2t o -2—uo a383 30 101
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= - (

3 1Tke1) 3 '“'”) Lo Y 1 e
k+1 - - ——ua )

—u —u —_—
8 3o 8 3 r_ e 4 e T3

-(k) “(k+1) (k+1)
4o -0 ) \%
4S“‘ 1)[ 83 83 k+1 8 ]

From the third equations in (81), we have

u;m = u;(h n (129)

Substitution of (78) and (79) into (129) leads to

(x)
- NN
3™ dak)) 23 33

33 -(k) ~(k-1)h 2 (k) (k
7 (5uy FUs - 70, [(6oyy” + o,y D, - TLNJT + 30M33)]
3oentke_—tkandy, 3 -0l
= z(Su3 —u, )+-§~u3
(k+1)
3333 Wy _~k+1y 2 (k+1)_ (k+1
+ W‘:KW” +oyy Il =1 N D—30M %) (130)

Adding displacement continuity equations (128), (130) to (121) above, the complete

set of equations can be written compactly in the form

Lf® ™ = to} (131)

where

™ ar B (o (0]
L= (132)
[H Tk‘l) [H ](k) [H ](k) [H ](k*l) [I‘I ](k*l)
1 2 3 4 s

{O’l}_(kgl)
{u'}(k)

0 = oy ® (133)
{ur}(k‘* 1)

{U'}-(k* 1)

with
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2 (x)
—-l—s_tksriipii Y
H = (134)
1 (k)
0 %tksaasa
t t t
— k N S 9 2w
503 0 "% 34%duy 0 0 0 -ZS%,
V= (135)
3 ) g 35®)
) _3 1 0 ——3333 3333 0
o 01 =3 4 10 7t,
8 (¢ S(k) +t S(k+l)) 0
-1? k“r3p3 " "k+17r3p3
1,19= » (136)
3 (k) (k+1)
Y ’g(tkssassﬂkusssas)
5 L 0 _tk+l _ Ck+1 5 0 0 0 0 0 __2_S(k+l)
) 8 24 oy Begr 5 “r3p3
(1= (137
3 1 S(bl) 3S(k+l)
3 1 0 —-3333 o 723333 0
° ot 3 4 10 .
2 (k+1)
"Etkusraps Y
(Hf* "= (138)
1 (k+1)
0 776tk+153333

The two sets of equations (132) correspond, respectively, to (121), and to the pair

(128), (130). For the laminate, combining equations for the layers (k), (k+1) and

(k+2), we get
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ST R 190 A ) R () NN (0) NN () A (1)
[ ™ B @ o 0 (0]
AT R T8 138 1318 S 1) B 1)
0=l o (@ ™A™t B 0 (o (139
o o MY I Y e

[0] [0] [0} [0] [(j’]‘.“*” (AT<? [RT<?

ol [0 [ [0 [}1.]“‘” (1,042 [ fe?

(o}
{U')(k)
{a.l}-(k)
13 R T L (140)
{O_'}-(k+1)

{ur}(k+2)
{01}-0&* 2),

For this matrix of operators to be self-adjoint, a sufficient condition is that [A'T* and
[HJ® be self-adjoint and [BT* be the adjoint of [HJ*', [HJ*® of [CT® and [H,J¥ of
[HJ*Y. This is not true for the above formulation. As the operators are all linear,
it would be possible to follow Tonti's [1967] approach and write the variational
formulation as a generalization of Mikhlin [1965] least square method. However, this
type of formulation when used with the finite element procedure, would require base
functions with a high degree of regularity. This would be prohibitively expensive to

use. An alternative is to use uy, and UY as field variables instead of the

combinations %(ﬁ‘;"—ﬁ‘;") and 30V —u{". This would yield a self-adjoint form.
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However, a simpler strategy, based on reduction of the number of field variables, is
presented in the following section. This approach will lead to a generalized Ritz type

variational formulation convenient for development of finite element approximations.

43.6 Discussion

Pagano [1978] used seven equilibrium equations, (113) through (115), and (48), (49),
ten constitutive equations, (60), (61), (69), (70), (71), and six interfacial continuity
equations (80), (81), tw solve for 23 field variables as given in (125) and (126).
Actually, there are only five equations of equilibrium and, therefore, there can only be
five corresponding displacement field variables. The: quantities N,, and M,; must be
regarded as entities introduced for convenience and completely defined by (48) and (49).
Using (48) and (49) to eliminate N,; and M,,, the number of local mechanical
variables reduces to eight requiring exactly eight constitutive equations. Noting that
U,, uj may be regarded as defined completely by (69) and (70), substitution in the
remaining eight constitutive equations viz. (60), (61) and (71) gives exactly eight

equations for the eight local kinematic variables viz. U4, u, » and u,, derived

from the five global variables u,, u, and u,. The total number of field equations
[Pagano 1978] is thus reduced to 19 in five independent displacement field variables,
eight mechanical quantities and six interfacial tractions and displacement components.
The set of interfacial displacement continuity equations and field equations constitutes a

self-adjoint system. The precise form is derived in the following section.
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44  Self-adjoint Form of the Field Equations

In this section we restate the governing equations of Paganos theory,

after

elimination of Nj and M,,, in a self-adjoint form. Essentially, this consists of using

(48) and (49) as definitions for N,, and M,, and to eliminate them as field variables

from the system of equations.

4.4.1 Displacements at the Interfaces
Substituting for N,, from (48) into (70) leads to

3 1. h 2

o - + + - h + -

—2-u3——2_5330ﬁ‘\03+-4_s3333(033 + 0, + 5‘553333(01-3.r -0,
Differentiation with respect to x, gives

LIRS WS A )+ 2 et o)

4 3. 12 3308 aBp 24 3333 33p 120 3333 " r3rp rd.rp

Substituting for M,, in (69) using (49) gives

2
2038, - §)= 28, M+ 208, (07, - oA, (@, 4 07, )

5h 330ﬁ aff 70 3333 70 3333 " rir r3,r
Differentiating with respect to x, gives
3~ 1- 1 3 .2 + -
(8 3.0 8“ ) = ﬁsaaaﬁMap.p + 28'0"'h 53333(0'33.,; - 033,p)

3
h + -
840 S3333(0’r3.rp + Ur3.rp)

Substituting (142), (144) in (74} and regrouping terms:

3+ _ h 1 2
+ S, - S S5V,

+
u, = -1—2—833aBNaB.p T 3308Mags - 5 03r3

13
[ 2

h3

~ + + -
" 120 53333(Ur3.rp T O, rp) + 3 ,,3,3(‘7 30 )
h’ + - h
- 84()83333(Ur3.r0 + or3.rp) + 5 p"B(O’ +°' )
2 nks, (o} -y e (o -y
T 380" 23333 %330 T T30’ T 5701333 %33, ¥ T3
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Similarly, (75) with (142) and (144) gives

3 h 1 2

1-
up = 3up - Eup - T2-533GBNaﬁ.p + —]—683303Muﬂ.p + ?Sp3r3vr
—-hss (o D ISR '
- 120 3333 0r3,rp - Ur3,rp -3_ p3rl3 7.r:«! r3
NP = ). b5 (ot+e)
+ 840 3333 Toaep ¥ Traey ~ 5 p3r3 03703
+ =%, (o} -0'_)--!-115 (ef. +0..) (146)
280 " “3333 %33, T T3’ T 7703333733, 33,0

Substituting for N,, and M,, from (48) and (49), with (141) and (143), (78) and (79)

give
to 3@ )+s + 25 M +Bs (ol + o))
Uy = 28 - u w33Nop T S03308Mapt 7533331933 33
17 + -
* TaoPS3333(033 - 033)
3
+ 3333[280(0 +0 , )+—-—(0' 3 (147)
- 3= a1 6 h -
uy = 50y - u3)-780533Naﬁ T oseeMes™ 7 $1333:(03; + T3
17 + -
* T30 08333(055 - 03
+ [2(c?, +o], )a-lor, ~a7, )] (148)
3333 280 37 24 r3,r r3.r

b '3

Following Pagano [1978], we introduce v,” and &5‘:) through the relationship

—(k)
ool (149)
Vo 2
3 K(})
1)}
8 - (150)

Using (149) and (150), (145) through (148) may be rewritten as:
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t 1 t
W ey _ =K kk) k) )1 k) (k) 2 oK) K
up (7) - vp + _i-$(p 1_2533aﬁ of.p —17)-5330ﬂMaB.p - -gsp3r3vr

3
t t
k() +(k) (k) k (k) +k) (k)
- 120 S3333( ri,rp -9 r3.rp) + 3 Sp3r3(: r3 . r3 )

3

t t

& (k) +(k) -(k) k k) +{k), (k)
" 840 S3333(ar3.rp + Urs.rp) * 3 Sp3r3(o-r3 +o )

2
N t
3 2 (g gy k gR) (oK)

~(k)
280 3333733, 7 T33p” T 3593333733, * 033, (1s51)
Wty oo ia(k) g 0 g0 gm0 2400 Gt
P P ~ p 27p 12 U338 aBp 10 “3308 " oBp 5§ p3r3 T x
P t
R0 (k) ~(x) Kl HB_ k)
- 120 S3333(Ur3.rp - Ur3.rp) + _j-sp3r3(ar3 ar3 )
13 ) t
koK) +(x) K K oK) oK), k)
+ 84083333(ar3.rp + arS.rp) - ?Sp3r3(ar3 +ar3 )
3 t
2.(k) +k) -{x) k ofk) +k) k)
+ 756‘;:53333(“33@ - 033&) - 3753333(0'33',) + 033_p) (152)
t
k k —HK) 1 k) (K 6 o) (k) , "k oK) (k) -(k)
(x5 = V3£ 55033Nes + 5 S330pMag 25335033 + Oy )
K
17 (x) +(k) -(k)
+ 1'40tus3333( 33 " T33)
2(Kk) 3 HK), _-(k} 1 (k) Ak
+ t1‘53333[ 280 (01'3.r+crr3.r)i H(Urlr-o’rl:)] (153)
where
w2 3@k i) (154)
4 3 R}
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442 Constitutive Equations for Generalized Displacements
The eight constitutive equations for the kth layer are given by (60), (61), and
(71).  Substituting (48) and (49) into (60), (61), we have for kth layer, with (149)

and (150)

2
1 - (k) (k) l(k) Lo, Ay, Yo K 4k
2°r }_ump)_qsﬂwﬁNoﬁ t #p33[ (0’ +0 )+ (0r3r—or3:) (155)

2 2
oK)
3“) 3 125(1;) M(k)+ 12 (k) k( ;(;) 4;))+ L (o_*(k)_*_a_—(k)) (156)

(Mp) 3 Tupaf T ap 3 #ﬂ33[1 120 r3s r3r
T, T,
(71) can be rewrittea as
e ~k)_ (k) *‘“_ 24 () ) 20 o HK) ~k
43 —( - )+ R NGO e B G £-1)

Combining (113) through (115) and (155) through (157) the equations for the kth

layer, are
(A + B + (o™ =0 k=1,2,3, . ,.N (158)

where [AT®, [BI*, [CI¥ are operator matrices and {u}*’, {o}™, {o}™ are sets of field

variables, respectively. Explicitly,
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1
0 0 0 -2—1‘l 0 0
1
0 0 0 V] 51-1 —570
0 0 0 0 0 9
or
(AT = 1 o (159)
k
—-2_ 2 0 0 —t—SumB 0 Y
1 12 ()
0 —.2— 2 0 0 —S_S#mﬁ 0
1
k
24 (x)
0 -5 -9 0 0 24
rp ap Slk p3rl
) 0
yo
3 0
2
0 -1
k)
[B]( = _Lk_s(k) 9 1w (160)
12 mP33 ar 2 kP33
1 0 9 _6 w
10 “ue33 ar 5t, up33
2 ()
_gsp3r3 0
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k)
[c]® = _t_*_s‘” 8 1w (161)
24

2 Tup3l3

1gw 9 6w
10 upJJay 5tu up33

{a}*® = k=123. .. 4N (162)

W™ = (163)

(k)
NoB

(k)
Mop

V(k)
Y

The operator matrix [A]* is self-adjoint in the sense of (111).

Substituting (151) through (153) into (81) leads to, for k=1, 2, . . . N-1,

[A](k){a,}—u-|)+[B](k){u}(k)+[51(k){a_}-(k)+[dkol){u}(kol)ﬂmﬂol)[a]%ku) =0 (164)

where
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1 (x)

0 0 1 350333

=0 Ak

S5 a2
(=1 =

=AK) k)
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:(k)=( 1_1)(k)36 +(

1

2
( +
+ (= 1 1 k+1) 3 _L + ( l)tk.,,lsi,k:’yl;

120 ~ 840 3333k 13pay

=0 _ ¢ 3 1 \ox) 2 3 1 s 2 @
=12 (280 + )53333 k-ai—( 280 )53333 k+1'8p
oV — 3 l )S(k) 2 a _1_ 3 (Iul) 2
=2 280 3333 k dy (24 280 )53333 k+1 oy
=AK) 1 17 o0 1 17 yk+1)
22 7 (T{ 140 Tao S3333k (Z 140) 33337k+1
(k) ,(k
A A
[A k) -
(k) , (k)
2 A2
(k) 1 1 o> 3 Q (k)
ll ( 120 840 3333tk apa,), +( 3 + )tksp3y3

56

120 840 3% gegy T '3 7
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10 ams&

6 W

ls(x) a9
10 uBJBap

6 (k)
~2ap33
5t, °

1 (k)
ShSs

_2m
5 p3y3
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(166)
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(k) 3 1 k)2
A =& 230+E‘-)S3333tk-6%
(k) 1 3 (k) L2
A, = (5_4_—280)53333tk5%,-
(x) 1 17 )
Ay = (2‘— 140 153333t
k+1) k+1
K(ll K(12
[X](kvl) - (169)
k+1) k+1)
K(zn K{zz
with
2
k+1) 1 1 \een 3 9 1.1 (k+1)
x‘ll = (120 840~ 3333°k+1 aps, + §'+_5-)tk’lsp3y3

3 1 \o(k+1) 2
280 '—Z{)Ssaastku Y

k+1)
x‘12 = (

1, 3 ey

—24 280 33337k+)

k+1) 1
K(22 = (7{_

K(zk; N _ ( 6%—

17
140

(k+1)
33337°k+1

The two equations in (164) restate (81)

using (151) through (153).

The quantities {0} and {0} are given for a problem and appear as forcing

functions defined as:
6'(0)

{0}4(1) - v {o_}-(N) =

~(0)
33

Define, {Q}” and {Q}™” as

[er) - [Arl) {0}(0)

~(N)
3
(170)

~(N)
33
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(1 3s0 o 1 1, (1 3O -3 1 (1) 2400
(120 840)833331 r3rp+( '§+§)tlbp3r3ax3 280+24)S3333t1033.p

= (171)
1 3 oD 2540) 1 17 1) ~(0)
( 24 280 )53333 17 r3, '+(Z 140 )53333110’33
and
N-1) [K]‘N){O'} -(N)
1 1 \oN) A(M (N) (N) 3 1 N 24(N)
( ]20 840 )83333 N r3. lp+(_§+ 5 )tNSerJ r3 (280 24 )53333 NU33p
= (172)

3 )V (250 L o(N) 1_ 17 \~v
(_‘2';{ 28())53333"‘ r31+83333th( 140

where superscript (0) denotes the top of the 1Ist layer and (N) denotes the bottom of
the Nth layer. Combining (158), (164), (171), and (172), the complete set of field

equations for the laminate is:
(X] {Y} = {2} (173)

where
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(=)

0 0 [C](3) [A](3) [B](3) 0

o o [ B (=] [ (&Y

o

=]
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{U} 0
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{U}—(2) 0
{u}f3) 0
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0
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0
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cry3
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33
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12 TwP337 ydy 2 "up337 33
1 (a0 6 §1) ~(0),
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033
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443 Adjointness of the Field equations

For the operator matrix [X] to be self-adjoint in the sense of (111) a sufficient
condition is that [A]Y, [E]* be self-adjoint and that [CI¥, [CI®; [AI¥, [AIY;
[BI*), [BI* constitute adjoint pairs. Using the symbol < , >, to denote inner

products i.e.,

=f fgdR
R

where f, g are functions defined over R, we establish the following relationships for

the field variables associated with the kth layer:

. k)
4.4.3.1 Operator matrix [Af
Considering the operators A} and A%’ of the operator matrix [A¥, taking inner

~(k)

product of ¥.°, an arbitrary function in the domain of I,, with I‘N‘:g, application

of Green's first theorem [Kreyszig, 1979] gives

~{k) (k). (k) _ ..(k) (k)
<V AYNg> =<V, rlNaﬂ
w 1 ..(k) (k) -(k)
_<N“p , —2-F2v (k)+ <N oM * >n“"
X)L (k)< (K) (k) ~(K)
= N AT > ot <N L 9> (176)

Here R™ is the configuration of the kth layer and S* is its boundary. Similarly,

considering the operators AL, ";) and taking inner product of ¢ , an arbitrary

function in the domain of T,, with —;-I',Mf:‘g, Green first theorem [Kreyszig, 1979]
gives

(k) (k) oK)
<3 'Astap>(

_ (k) (k)
y n"-<¢ I'M >Rm

+< M(k) ¢(k) >

x) 1 (k)
<MFP ’ 31-26)) >R‘k’ 8p

(x)
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- <M(k) (k)2 (k) (k)

(x)
A, > <n+<Moa”n N (177

S();)
For operators Al and A% Green's first theorem [Kreyszig, 1979] gives, for an arbitrary

& (l)

function of ¥\ in the domain of R™,

~(k) (k)y (k) ~(k) (k)
<V, L ALV >R"‘) <9, ’VG.OI>R“‘)

(k) (k) k) ~(k)
-<V“ ’ v3n>R(k)+<V(° » Vg > Q@

(k) (k) (k) (k) (k)
<V A63 3 > (L)+<V nn ’ V3 >S(k) (178)

Operators AY , A% , AX are tensors which are symmetric in the sense of (97). For

arbitrary functions &, M% and V% which are square integrable over R, we have

(k) (k)

(k) :‘)N(:; Rm_ :‘: ' S“tpaﬁ N(k) n“" <Nk) S,;poﬁ N:‘k: ©
X k

= <Ng L AURL> o ()

(k) (k)M(k) = <M“‘) 1252{;5 Mf:;> W= <Mf:; , lisf‘;ém;k,:),im
1 YW
- AT 180
<V(:) ' Azkzvgt)),km: ;x) , 2_4:_?]1\,(1{)) m=<V(:) , 34_55%)1_1‘7(:) "
_ <V(, A(:‘))V;k) @ (181)

The pair A“" A“';) consists of linear algebraic operators which are traispose of each
other. This fact along with (176) through (181) satisfies the requirement of

self-adjointness of operator matrix, [AJV.
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. — k)
4432 Operator matrix (=]
Considering the operator matrix [E]*’, the diagonal operators =% is symmetric in

the sense of (97) because, for &5 , o, defined over R™:

< W ) k) (k) =) = k)

<227 33 > u.) <U > =227 33 >R(k) (182)

For the operator =\, taking inner product of &, defined over £, with =¥ g%,

the Green's second theorem [Kreyszig, 1979] gives

k) (k) _~k) (k) 1 1 (k) .3

<&p3 » S 119%s >R‘“=<ap3 ! “m~ 840 X53333tk+s(3k3‘313) :+l)aw(:4k:>y
+ ( + xtks(pkz)yw k41 ’:::)‘3))0_(”> o)
= _(k) (= E(‘)" 8‘140)( (3k3)33 :"’S(aks‘sl; :* )o';(;f)’v
+ ( +1 thsf::!)y:i k+1 fok;yl;)&_(k) rR®
+ <&;(k) (= ]2_0 _BEX (3k3)33 :+S(:sk3+;;‘:+lh;:;>s“’
N <U—(k)n - 1;0—81110 IS(3k3)33tk""S(:iki;‘;; 2* ]6‘-('9 s®
- <o';(:) , 5(:‘,)5';(;5“&)
+ <6’;(3k)"7, (= m‘ 811101 (3k3)33: (3k3‘;3) :ﬂ]o;(;l)’ s
R 0 ™
For the off-diagonal pair Zj; and £, setting up an inner product of Z,,0%  and an

arbitrary &% in the domain of Z3, gives:

<6_—(k) =A%) _~x) -(k) (2 3 lxs(k) 2—§ (l+l)2 ]a'_m

> =<

» Z12%33 707 280 24 "T3333k S3333te1 3397 R
-(x) 3 (x) - ku) 2 k)
= =<0, (280 24 I 533334 S3333 %01 ]a'psp R
(x) 1 2 (m) 2 (k)
+ <6y, (28() xsss:n Saanteloyy > o)
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-(x) ,..(x)a,-(k) F<(S 3 lxs(k) t2 (nm)z ]o,—(k) -(u) (184)

33 '~ LY 280 24 3333k 3333 k+17 33 °* p3 s‘k)

Equations (182) through (184) ensure the self-adjointness of operator matrix [E]*.

4433 Operator matrices [CT® and [T¥

Considering the adjoint operators Ci , T%; C¥ , T¥ of matrices [CI* and [CI*,
taking inner product of Nf,';), an arbitrary function in the domain of Cﬁf’, with
C¥o™, Green's first theorem [Kreyszig, 1979] gives

[ WL () S ()

(k) k) _+(k) -
<N/.4p ’ C(“Ud >R(k)—<N“p * 12 Syp33ar3,r R®
t
+(k) k_ (k) (k) ) (k) (k)
= =<0, » 7358331 apr>R(x)+<°r r* 12 SaB33 g™ W
KpelK) +k) (k) (k)
- <o C(|4Naa> (x)+<°' T SaﬁssNap> ) (185)

Similarly, for the inner product of an arbitrary function M(_“B’, in the domain of C‘,‘;’,

with Co®, Green's first theorem [Kreyszig, 1979] gives:
<M(k) dk) +(k) _<M(k) , losi‘k; :;kz @
- —<o), ]1{)'52233 Exkﬁ)r> wt <o, 1_10“52‘;33 ?;
~ <07 TiMg> o+ <ayy nr,i%sﬁ‘;33mg‘;>s(k) (186)

Each of the six pairs of algebraic operators viz. C% ,CV; &%, TY;

Cy .Gy C¥,C¢ C¥,T%; C%,C% consists of operators which are
transpose of each other. This fact along with (185) and (186) ensures the adjointness

of the pair [CI* and [C¥.
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4.43.4 Operator matrices [AT® and [K[®

Considering the operators A\,’, and AY of the operator matrices [A]*' and [AI",

application of Green's second theorem [Kreyszig, 1979] to the inner product of &.*,

defined over, AY with A% o implies

k) k) -(3k)> =<5® (L 1 _ 1 1y @370 L _+ )t K gk

<& RO 3 ° 7120 840 3333k r3,rp k p3r3 r3 7 giR)

(L 1 _ 1 S 3w +H= + )‘S(k) & s "

r3 120 840 3333k p3pr k=p3r3” p3
1 1 3ok o=k}
+ <& n, (120—840 )tk53333 p3p> (k)
. ~m 1 1 .3 (k) Ak)
- ri 7) (120—840)tk 3333 p3p~ (K
~(k) (k) 4 +(k)
= <0, AT, L
< ® (L 1 1 3¢ ® A
+ r3 T’ 120 840 % 3333 p3p” &)
1 4 3.k Hi)
) <°r3n (120 840)tk53333&p3p <0 (187)
Application of Green's first theorem [Kreyszig, 1979] to the inner product of &, an

arbitrary function in the domain of A(z';), with K(,';) cr:f,“ gives

»(x) k) (k) +k) 3 1 0 .2 4&)
<e, 0 Rho> =<0, (53537533535 T 13 oo

4x) (3 3 1 )Sm &«k)> —(k) (= 3 1 )t: (;3) «x)

337 p3 mn >S(k)

33 ' 280 24 3333 k p3.p (k) 280 24
<k) (K)o HK) ~k) 3 1,2 (k) ¢(k)
= <033 ’ AZla'r.'i >R“‘)+< 33 (280 24 )ti 3333 r3 nr>s(k) (188)

L. . . . . SE(Y)
Similarly, for &3, an arbitrary function in the domain of AY, and A} o}y,

application of Green's first theorem {Kreyszig, 1979] gives

+(k) k) _-(k) *(k) 1 3\ 2 o ®
<Gy, 'K(znors > =< '(-24 280)53333 T 307 g0
~x) 1 Gk 42 HK)
=<0, 737 280) 3333%9 33,7 g0
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1 3 L2k -(x) +k)
+ <(—3,7+—_280 1,S53339,3 M, » O gy > w

- <o,-(k) , A(lt)

- s (S Ly g Wy gy (189)

>
12933 7w 280 24 1733337y3 T3z T

Operators A and A% are identical scalars and for oY, and o, arbitrary functions
defined over of R™, implies

<6';(;) , ARG _<&;(;) ’ (_‘}1__ 17 W 2o RS

22733 7 g 140 33337k 33 7 g
“) 117 () 2. HK) _ ) (k) o +Hk)
= <03 (I" 140 )S4333%9 33 > =<0 Aj% 3y > o) (190)

Equations (187) through (190) ensure the adjointness of the pair consisting of [A]*’ and

AV,

. k) 1Y)
4.43.5 Operator matrices [BI* and [Bf
Considering the pair of operators B’ and BY% belonging respectively to the
operator matrices [Bf* and [BI*), the inner product of an arbitrary function K(j, in

the domain of B,,, with B,0’, the Green's first theorem [Kreyszig, 1979] gives

k) k) k) w _Hhw
<N°,p ’ B4| y3 T T <Naﬁ ' 12 TeR33 y3y T g
- —<cg® _ g g t<o®p g g
¥3 * 77 TeB33 aBy” g y3 My T3 %ap33 V0B ” g0
t
-(k) K)r(k) (k) k (k) we(k)
- <o) vB(..Nc.B>Rm+<‘T,3 N, + =T Sop3sNos > g (191)

For the pair of operators ",‘) and B‘,';), the inner product of an arbitrary function Mf.“,’.

in the domain of Bj), with B0y, gives, upon application of Green's first theorem

[Kreyszig, 1979],

<q®  pWg® Cm® 1

(o4 =<M —_
S A kp * 10 “up330y 3.y 7 gk

- { - X
k) 1 %) K) > (k) 1 (0 ()>

=TSO 700833 ase” gt <T03 Ty 0 15208330~ g0
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(k) Ky (k) ~(k) 1
= <G’73 , B(I5M"B>R(k)+ <0’y3 'ny N ﬁ

s gy (192)

aB33Vapg” g

The elements in the six pairs of symmetric operators viz. B\, BY\'; BY, BY;
BY, BY: BY, BY; BY, BY; BY, BY, consist of algebraic operators such that
each element is transpose of the other. This property along with (191) and (192)

ensures the adjointness of the pair of operator matrices [BI*' and [BJ".
pa

4.5 Consistent Boundary Operators

The general mixed boundary-value problem of linear elastostatics consists in finding
a state ie, a set of displacement, strain, and stress fields, which satisfies the governing
field equations in a given spatial domain and meets the specified boundary conditions.
A variational form of the boundary-value problem exists if a function over the space
of admissible states can be defined such that its Gateaux differential along arbitrary
paths vanishes only at the solution state. The set of admissible states is the collection
of all possible {Y} in the domain of the operator matrix [X]. Closure of this
collection includes the exact solution. A variational formulation for coupled boundary
value problems was proposed by Sandhu and Salaam [1975] for the case in which the
the operator matrix [X] is self-adjoint with respect to the bilinear mapping used and
the boundary operator is consistent with [X] in the sense of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>